treams.lattice.lsumcw2d¶
- treams.lattice.lsumcw2d(l, k, kpar, a, r, eta) = <ufunc 'lsumcw2d'>¶
Fast summation of cylindrical functions on a 2d lattice
Computes
\[D_{l}(k, \boldsymbol k_\parallel, \boldsymbol r, \Lambda_2) = \sum_{\boldsymbol R \in \Lambda_2} H_l^{(1)}(k |\boldsymbol r + \boldsymbol R|) \mathrm e^{\mathrm i l \varphi_{-\boldsymbol r - \boldsymbol R}} \mathrm e^{\mathrm i \boldsymbol k_\parallel \boldsymbol R}\]using the Ewald summation.
The cut between the real and reciprocal space summation is defined by eta. Larger values increase the weight of the real sum. In a the lattice vectors are given as rows.
- Parameters:
l (integer) – Order
k (float or complex) – Wave number
kpar (float, (2,)-array) – Wave vector
a (float, (2,2)-array) – Lattice vectors
r (float, (2,)-array) – Shift vector
eta (float or complex) – Separation value
- Returns:
complex