treams.lattice.lsumsw2d_shift¶
- treams.lattice.lsumsw2d_shift(l, m, k, kpar, a, r, eta) = <ufunc 'lsumsw2d_shift'>¶
Fast summation of spherical functions on a 2d lattice with out of lattice shifts
Computes
\[D_{lm}(k, \boldsymbol k_\parallel, \Lambda_3, \boldsymbol r) = \sum_{\boldsymbol R \in \Lambda_3} h_l^{(1)}(k |\boldsymbol r + \boldsymbol R|) Y_{lm}(-\boldsymbol r - \boldsymbol R) \mathrm e^{\mathrm i \boldsymbol k_\parallel \boldsymbol R}\]using the Ewald summation.
The cut between the real and reciprocal space summation is defined by eta. Larger values increase the weight of the real sum. In a the lattice vectors are given as rows. The lattice is in the x-y-plane.
- Parameters:
l (integer) – Degree \(l \geq 0\)
m (integer) – Order \(|m| \leq l\)
k (float or complex) – Wave number
kpar (float, (2,)-array) – Tangential wave vector
a (float, (2,2)-array) – Lattice vectors
r (float, (3,)-array) – Shift vector
eta (float or complex) – Separation value
- Returns:
complex