treams.lattice.dsumsw1d¶
- treams.lattice.dsumsw1d(l, k, kpar, a, r, i) = <ufunc 'dsumsw1d'>¶
Direct summation of spherical functions on a 1d lattice
Computes
\[D_{l0}(k, k_\parallel, \Lambda_1, r) = \sum_{R \in \Lambda_1} h_l^{(1)}(k |r + R|) Y_{l0}(-\boldsymbol{\hat z} (r + R)) \mathrm e^{\mathrm i k_\parallel R}\]using the Ewald summation.
directly for one expansion value i. Sum i from 0 to a large value to obtain an approximation of the sum value. The lattice is along the z-axis. Therefore only \(m = 0\) contributes.
- Parameters:
l (integer) – Degree \(l \geq 0\)
k (float or complex) – Wave number
kpar (float) – Tangential wave vector component
a (float) – Lattice pitch
r (float) – In-line shift
i (integer) – Expansion value
- Returns:
complex