treams.special.vcw_rM¶
- treams.special.vcw_rM(kz, m, xrho, phi, z) = <ufunc 'vcw_rM'>¶
Regular vector cylindrical wave M
The vector cylindrical wave is defined by
\[\boldsymbol M_{k_z m}^{(1)}(x_\rho, \varphi, z) = \left(\frac{\mathrm i m}{x_\rho} J_m(x_\rho)\boldsymbol{\hat{\rho}} - J_m'(x_\rho) \boldsymbol{\hat{\varphi}}\right) \mathrm e^{\mathrm i (k_z z + m \varphi)}\]using
treams.special.jn()
.This function is describing a transverse solution to the vectorial Helmholtz wave equation, that is also tangential on a cylindrical surface. This is often used to describe a transverse electric (in cylindrical coordinates) (TE) wave.
- Parameters:
kz (float, array_like) – Z component of the wave
m (int, array_like) – Order \(|m| \leq l\)
xrho (float or complex, array_like) – Radial in units of the wave number \(k_\rho \rho\)
phi (float, array_like) – Azimuthal angle
z (float, array_like) – Z coordinate
- Returns:
complex, 3-array