treams.special.intkambe¶
- treams.special.intkambe(n, z, eta) = <ufunc 'intkambe'>¶
Integral appearing in the accelerated lattice summations
Named here after its appearance (in a slightly different form) in equation (3.16), in Kambe’s paper [1].
This function is defined as
\[I_n(\eta, z) = \int_\eta^\infty t^n \mathrm e^{-\frac{z^2t^2}{2} + \frac{1}{2t^2}} \mathrm d t\]and is calculated via recursion.
- Parameters:
n (integer, array_like) – Order
z (float or complex, array_like) – Argument
eta (float or complex, array_like) – Integral cutoff
- Returns:
float or complex
References