treams.lattice.lsumcw1d¶
- treams.lattice.lsumcw1d(l, k, kpar, a, r, eta) = <ufunc 'lsumcw1d'>¶
Fast summation of cylindrical functions on a 1d lattice
Computes
\[D_{l}(k, k_\parallel, r, \Lambda_1) = \sum_{R \in \Lambda_1} H_l^{(1)}(k |r + R|) (\mathrm{sign}(-r - R))^l \mathrm e^{\mathrm i k_\parallel R}\]using the Ewald summation.
The cut between the real and reciprocal space summation is defined by eta. Larger values increase the weight of the real sum. In a the lattice vectors are given as rows. The lattice is along the x axis.
- Parameters:
l (integer) – Order
k (float or complex) – Wave number
kpar (float) – Tangential wave vector component
a (float) – Lattice pitch
r (float) – In-line shift
eta (float or complex) – Separation value
- Returns:
complex