treams.lattice.lsumcw1d

treams.lattice.lsumcw1d(l, k, kpar, a, r, eta) = <ufunc 'lsumcw1d'>

Fast summation of cylindrical functions on a 1d lattice

Computes

\[D_{l}(k, k_\parallel, r, \Lambda_1) = \sum_{R \in \Lambda_1} H_l^{(1)}(k |r + R|) (\mathrm{sign}(-r - R))^l \mathrm e^{\mathrm i k_\parallel R}\]

using the Ewald summation.

The cut between the real and reciprocal space summation is defined by eta. Larger values increase the weight of the real sum. In a the lattice vectors are given as rows. The lattice is along the x axis.

Parameters:
  • l (integer) – Order

  • k (float or complex) – Wave number

  • kpar (float) – Tangential wave vector component

  • a (float) – Lattice pitch

  • r (float) – In-line shift

  • eta (float or complex) – Separation value

Returns:

complex