treams.lattice.lsumsw1d¶
- treams.lattice.lsumsw1d(l, k, kpar, a, r, eta) = <ufunc 'lsumsw1d'>¶
Fast summation of spherical functions on a 1d lattice
Computes
\[D_{l0}(k, k_\parallel, \Lambda_1, r) = \sum_{R \in \Lambda_1} h_l^{(1)}(k |r + R|) Y_{l0}(-\boldsymbol{\hat z} (r + R)) \mathrm e^{\mathrm i k_\parallel R}\]using the Ewald summation.
The cut between the real and reciprocal space summation is defined by eta. Larger values increase the weight of the real sum. The lattice is along the z-axis. Therefore only \(m = 0\) contributes.
- Parameters:
l (integer) – Degree \(l \geq 0\)
k (float or complex) – Wave number
kpar (float) – Tangential wave vector component
a (float) – Lattice pitch
r (float) – In-line shift
eta (float or complex) – Separation value
- Returns:
complex