treams.special.vpw_A¶
- treams.special.vpw_A(kx, ky, kz, x, y, z, p) = <ufunc 'vpw_A'>¶
Vector plane wave of well-defined helicity
The vector plane wave is defined by
\[\boldsymbol A_{\boldsymbol k \pm}(\boldsymbol r) = \frac{\boldsymbol N_{\boldsymbol k \pm}(\boldsymbol r) \pm \boldsymbol M_{\boldsymbol k}(\boldsymbol r)}{\sqrt{2}}\]with
treams.special.vpw_M()
andtreams.special.vpw_N()
. The sign is determined by p, where 0 corresponds to negative and 1 to positive helicity.This function is describing a transverse solution to the vectorial Helmholtz wave equation. Additionally, it has a well-defined helicity.
- Parameters:
kx (float or complex, array_like) – X component of the wave vector
ky (float or complex, array_like) – Y component of the wave vector
kz (float or complex, array_like) – Z component of the wave vector
x (float, array_like) – Y coordinate
y (float, array_like) – X coordinate
z (float, array_like) – Z coordinate
p (bool, array_like) – Helicity
- Returns:
complex, 3-array