treams.special.vcw_N¶
- treams.special.vcw_N(kz, m, xrho, phi, z, k) = <ufunc 'vcw_N'>¶
Singular vector cylindrical wave N
The vector cylindrical wave is defined by
\[\boldsymbol N_{k_z m}^{(3)}(x_\rho, \varphi, z) = \left(\frac{\mathrm i k_z}{k} {H_m^{(1)}}'(x_\rho)\boldsymbol{\hat{\rho}} - \frac{m k_z}{k x_\rho} H_m^{(1)}(x_\rho) \boldsymbol{\hat{\varphi}} + \frac{k_\rho}{k} H_m^{(1)}(x_\rho) \boldsymbol{\hat{z}}\right) \mathrm e^{\mathrm i (k_z z + m \varphi)}\]using
treams.special.hankel1()
.This function is describing a transverse solution to the vectorial Helmholtz wave equation. This is often used to describe a transverse magnetic (in cylindrical coordinates) (TM) wave.
- Parameters:
kz (float, array_like) – Z component of the wave
m (int, array_like) – Order \(|m| \leq l\)
xrho (float or complex, array_like) – Radial in units of the wave number \(k_\rho \rho\)
phi (float, array_like) – Azimuthal angle
z (float, array_like) – Z coordinate
k (float or complex) – Wave number
- Returns:
complex, 3-array