treams.special.vsh_X

treams.special.vsh_X(l, m, theta, phi) = <ufunc 'vsh_X'>

Vector spherical harmonic X in spherical coordinates

The vector spherical harmonics can be defined via the (scalar) spherical harmonics (treams.special.sph_harm())

\[\boldsymbol X_{lm}(\theta, \varphi) = \frac{\nabla \times \boldsymbol r}{\sqrt{l (l + 1)}} Y_{lm}(\theta, \varphi)\]

which can be expressed as

\[\boldsymbol X_{lm}(\theta, \varphi) = \mathrm i \sqrt{\frac{2 l + 1}{4 \pi l (l + 1)} \frac{(l - m)!}{(l + m)!}} \left(\mathrm i \pi_{lm}(\theta, \varphi) \boldsymbol{\hat\theta} - \tau_{lm}(\theta, \varphi) \boldsymbol{\hat\varphi}\right)\]

with the angular functions treams.special.pi_fun() and treams.special.tau_fun().

Parameters:
  • l (int, array_like) – Degree \(l \geq 0\)

  • m (int, array_like) – Order \(|m| \leq l\)

  • theta (float or complex, array_like) – Polar angle

  • phi (float, array_like) – Azimuthal angle

Returns:

complex, 3-array