treams.special.vcw_rA¶
- treams.special.vcw_rA(kz, m, xrho, phi, z, k, pol) = <ufunc 'vcw_rA'>¶
Regular helical vector cylindrical wave
The vector spherical wave is defined by
\[\boldsymbol A_{k_z m \pm}^{(1)}(x_\rho, \varphi, z) = \frac{\boldsymbol N_{k_z m}^{(1)}(x_\rho, \varphi, z) \pm \boldsymbol M_{k_z m}^{(1)}(x_\rho, \varphi, z)}{\sqrt{2}}\]with
treams.special.vcw_rM()
andtreams.special.vcw_rN()
. The sign is determined by p, where 0 corresponds to negative and 1 to positive helicity.This function is describing a transverse solution to the vectorial Helmholtz wave equation. Additionally, it has a well-defined helicity.
- Parameters:
kz (float, array_like) – Z component of the wave
m (int, array_like) – Order \(|m| \leq l\)
xrho (float or complex, array_like) – Radial in units of the wave number \(k_\rho \rho\)
phi (float, array_like) – Azimuthal angle
z (float, array_like) – Z coordinate
k (float or complex) – Wave number
pol (bool, array_like) – Polarization
- Returns:
complex, 3-array